Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Structural Stiffness and Damping Coefficients in a Metal Mesh Foil Bearing

[+] Author Affiliations
Luis San Andrés, Thomas Abraham Chirathadam, Tae-Ho Kim

Texas A&M University, College Station, TX

Paper No. GT2009-59315, pp. 763-771; 9 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


Engineered Metal Mesh Foil Bearings (MMFB) are a promising low cost bearing technology for oil-free microturbomachinery. In a MMFB, a ring shaped metal mesh (MM) provides a soft elastic support to a smooth arcuate foil wrapped around a rotating shaft. The paper details the construction of a MMFB and the static and dynamic load tests conducted on the bearing for estimation of its structural stiffness and equivalent viscous damping. The 28.00 mm diameter, 28.05 mm long bearing, with a metal mesh ring made of 0.3 mm Copper wire and compactness of 20%, is installed on a test shaft with a slight preload. Static load versus bearing deflection measurements display a cubic nonlinearity with large hysteresis. The bearing deflection varies linearly during loading, but nonlinearly during the unloading process. An electromagnetic shaker applies on the test bearing loads of controlled amplitude over a frequency range. In the frequency domain, the ratio of applied force to bearing deflection gives the bearing mechanical impedance, whose real part and imaginary part give the structural stiffness and damping coefficients, respectively. As with prior art published in the literature, the bearing stiffness decreases significantly with the amplitude of motion and shows a gradual increasing trend with frequency. The bearing equivalent viscous damping is inversely proportional to the excitation frequency and motion amplitude. Hence, it is best to describe the mechanical energy dissipation characteristics of the MMFB with a structural loss factor (material damping). The experimental results show a loss factor as high as 0.7 though dependent on the amplitude of motion. Empirically based formulas, originally developed for metal mesh rings, predict bearing structural stiffness and damping coefficients agreeing well with the experimentally estimated parameters. Note, however, that the metal mesh ring, after continuous operation and various dismantling and reassembly processes, showed significant creep or sag that resulted in a gradual decrease of its structural force coefficients.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In