Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Analytical Studies on Flexure Pivot Tilting Pad Gas Bearings With Dampers Applied to Radially Compliant Pads

[+] Author Affiliations
Daejong Kim

University of Texas at Arlington, Arlington, TX

Aaron Rimpel

Texas A&M University, College Station, TX

Paper No. GT2009-59285, pp. 743-753; 11 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


Hydrodynamic flexure pivot tilting pad gas bearings (FPTPGBs) can enable successful operation of oil-free microturbomachinery, and FPTPGBs with radially compliant pads (FPTPGB-Cs) permit rotor centrifugal and/or thermal growth to exceed original bearing clearances and achieve higher speeds. This work presents the experimental and analytical study of such bearings and the application of dampers behind the pad radial compliance structure. A time domain orbit simulation method was implemented as the primary analysis tool to predict rotor-bearing response to imbalance, the presence and location of critical speeds, etc., and compare with test results. Experiments demonstrate the stable hydrodynamic operation of FPTPGBs with a ∼28.6 mm, 0.8 kg rotor above 120 krpm for the first time. The rotor-bearing system was intentionally destabilized in tests by increasing bearing clearances, and viscoelastic dampers added behind the FPTPGB pads delayed the onset of subsynchronous vibrations (from 43 krpm without damper to above 50 krpm with damper). Midrange subsynchronous vibrations of the destabilized system initiated at ∼20 krpm were suppressed by ∼25 krpm due to the stabilizing effect of rotor centrifugal growth. The viscoelastic dampers had a negligible effect on suppressing these midrange subsynchronous vibrations in experiments, but this was not demonstrated in simulations, presumed to be due to much lower stiffness contribution of the damper at lower frequencies.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In