Full Content is available to subscribers

Subscribe/Learn More  >

Rotordynamic Force Coefficients of a Hybrid Brush Seal: Measurements and Predictions

[+] Author Affiliations
Luis San Andrés, Adolfo Delgado, José Baker

Texas A&M University, College Station, TX

Paper No. GT2009-59072, pp. 613-620; 8 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


Brush seals effectively control leakage in air breathing engines, albeit only applied for relatively low-pressure differentials. Hybrid brush seals (HBS) are an alternative to resolve poor reliability resulting from bristle tip wear while also allowing for reverse shaft rotation operation. A HBS incorporates pads contacting the shaft on assembly; and which under rotor spinning, lift off due to the generation of a hydrodynamic pressure. The ensuing gas film prevents intermittent contact, reducing wear and thermal distortions. The paper presents rotordynamic measurements conducted on a test rig for evaluation of HBS technology. Single frequency shaker loads are exerted on a test rotor holding a hybrid brush seal and measurements of rotor displacements follow for operating conditions with increasing gas supply pressures and two rotor speeds. A frequency domain identification method delivers the test system stiffness and damping coefficients. The HBS stiffness coefficients are not affected by rotor speed though the seal viscous damping shows a strong frequency dependency. The identified HBS direct stiffness decreases ∼15% as the supply/discharge pressure increases Pr = 1.7 to 2.4. The HBS cross-coupled stiffnesses are insignificant, at least one order of magnitude smaller than the direct stiffnesses. A structural loss factor (γ) and dry friction coefficient (μ) represent the energy dissipated in a HBS by the bristle-to-bristle and bristle-to-pads interactions. Predictions of HBS stiffness and damping coefficients correlate well with the test derived parameters. Both model predictions and test results show the dramatic reduction of the seal equivalent viscous damping coefficients as the excitation whirl frequency increases.

Copyright © 2009 by ASME
Topics: Force , Measurement



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In