0

Full Content is available to subscribers

Subscribe/Learn More  >

Mode Evolution of Asymmetric Rotors Assembled to Flexible Bearings and Housing

[+] Author Affiliations
Hyunchul Kim, I. Y. Shen

University of Washington, Seattle, WA

Paper No. GT2009-59024, pp. 605-612; 8 pages
doi:10.1115/GT2009-59024
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

This paper is to study how vibration modes of a stationary asymmetric rotor evolve when it is assembled to a flexible housing via multiple bearing supports. Prior to the assembly, vibration modes of the rotor are classified as “balanced modes” and “unbalanced modes.” Balanced modes are those modes whose natural frequencies and mode shapes remain unchanged after the rotor is assembled to the housing via bearings. Otherwise, the vibration modes are classified as “unbalanced modes.” In this paper, we first develop two mathematical criteria to identify balanced modes. For the first criteria, the rotor is subjected to fixed boundary conditions at the bearings prior to assembly. In this case, a vibration mode will be a balanced mode if the reactions at the fixed boundary vanish. For the second criterion, the rotor is subjected to free boundary conditions (including the bearing points) prior to assembly. In this case, a vibration mode will be a balanced mode if the bearing locations are nodal points of the vibration mode. These mathematical criteria are then applied to a rotor consisting of a rigid hub supporting a flexible structure, which appears in many practical applications. For balanced modes, the criteria lead to a conclusion that surface integrals of modal forces and moments at the flexible-rigid rotor interface will vanish. Moreover, these surface integrals can be conveniently calculated using finite element methods. To validate the mathematical criteria, modal testing was conducted on a disk with 4 pairs of brackets mounted on a rigid spindle, a ball-bearing spindle and a fluid-dynamic bearing spindle.

Copyright © 2009 by ASME
Topics: Bearings , Rotors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In