0

Full Content is available to subscribers

Subscribe/Learn More  >

A Methodology to Predicting Total Damping of Axial Compressor Shrouded Stator Vanes

[+] Author Affiliations
Caetano Peng, Andrea Zilli

Rolls-Royce Plc., Derby, UK

Paper No. GT2009-60359, pp. 595-604; 10 pages
doi:10.1115/GT2009-60359
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by Rolls-Royce plc

abstract

The main objective of this paper is to evaluate the capability of existing numerical tools to predict the total damping Q values of axial core compressor shrouded stator vanes with a view to use them in the forced response simulations. Here, the aerodynamic damping is calculated for a wide range of vane vibration modes and nodal diameters (inter-blade-phase angles) using a CFD based aeroelasticity program. The mechanical friction damping of vane vibration modes is computed by using a multi-harmonic balance forced response code. These calculations take into account the effects of normal contact forces, friction coefficients, contact stiffness and excitation (forcing) loads. A pragmatic methodology has been developed to calculate the aerodynamic and mechanical friction damping values and hence predicting total Q values of stator vanes. Sensitivity studies are performed to assess the effects of mass flow and inter-blade-phase angles on aerodynamic damping. Moreover, the analyses allowed to identify the modeshapes associated with either high aerodynamic or mechanical damping or both. The numerical results are correlated with experimentally measured total Q values from strain gauge engine tests. This work shows that the current numerical tools have the capability to predict not only the aerodynamic forcing but also aerodynamic and mechanical friction damping values. Therefore, the analysis tools and methodologies close the stator vane forced response prediction capability loop. It means the vane force responses can be predicted as measured from strain gauge engine tests. This constitutes an important step in the development of axial compressors test-to-simulations, as more efforts are being placed towards the development of whole engines test-to-simulations.

Copyright © 2009 by Rolls-Royce plc

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In