0

Full Content is available to subscribers

Subscribe/Learn More  >

Preliminary Flutter Design Method for Supersonic Low Pressure Turbines

[+] Author Affiliations
Markus Meingast

Technische Universität Berlin, Berlin, Germany

Robert E. Kielb, Jeffrey P. Thomas

Duke University, Durham, NC

Paper No. GT2009-59177, pp. 507-515; 9 pages
doi:10.1115/GT2009-59177
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

The “Tie-Dye” (TD) method is a well-known preliminary flutter design method for subsonic low pressure turbine (LPT) blades. In this paper, a study of 2D mode shape sensitivity using the TD-method for supersonic exit Mach numbers is presented. Using a harmonic balance CFD method, TD maps displaying the critical reduced frequency for a range of pitching axis locations were created. The TD method was run on two geometrically different blades. Subsonically, the characteristic appearance does not change much over airfoil types. An even lesser amount of morphing can be observed between the different profiles in the supersonic range, than for the subsonic cases. Pure bending modes show a high sensitiviy to the actual bending direction. Therefore the single critical reduced frequency value criteria does not hold up for all cases. The method is applicable for supersonic exit flows, and is even more predictable and universal than for the subsonic cases.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In