0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Static/Dynamic Coupling on the Forced Response of Turbine Bladed Disks With Underplatform Dampers

[+] Author Affiliations
Christian M. Firrone, Stefano Zucca, Muzio Gola

Politecnico di Torino, Turin, Italy

Paper No. GT2009-59905, pp. 429-440; 12 pages
doi:10.1115/GT2009-59905
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

Friction contacts are often used in turbomachinery design as passive damping systems. In particular underplatform dampers are mechanical devices used to decrease the vibration amplitudes of bladed disks. Numerical codes are used to optimize during design the underplatform damper parameters in order to limit the resonant stress level of the blades. In such codes the contact model plays the most relevant role in the calculation of the dissipated energy at friction interfaces. One of the most important contact parameters is the static normal load acting at the contact, since its value strongly affects the area of the hysteresis loop of the tangential force and therefore the amount of dissipation. A common procedure to estimate the static normal loads acting on underplatform dampers consists in decoupling the static and the dynamic balance of the damper. A preliminary static analysis of the contact is performed in order to get the static contact/gap status to use in the calculation, assuming that it does not change when vibration occurs. In this paper a novel approach is proposed. The static and the dynamic displacements of the system (bladed disk + underplatform dampers) are coupled together during the forced response calculation. Static loads acting at the contacts follow from static displacements and no preliminary static analysis of the system is necessary. The proposed method is applied to a numerical test case representing a simplified bladed disk with underplatform dampers. Results are compared with those obtained with the classical approach.

Copyright © 2009 by ASME
Topics: Dampers , Turbines , Disks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In