Full Content is available to subscribers

Subscribe/Learn More  >

Design Methods of Friction Damping at Blade-Disk Joints

[+] Author Affiliations
Jie Hong, Lulu Chen, Yanhong Ma, Xin Yang

Beijing University of Aeronautics and Astronautics, Beijing, China

Paper No. GT2009-59510, pp. 315-322; 8 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


Friction at blade-disk joints is an important source of damping that reduces low frequency resonant amplitudes to acceptable levels in blade-disk assemblies. An effective method is proposed to predict nonlinear forced response of bladed disks taking account of the nonlinear force at blade-disk joints in frequency domain, which syncretizes the excellencies of harmonic balance method, dynamic softness method and tracking motion method. Constrained Mode Shapes are introduced to express the relative motion which occurs at the contact interfaces of blade roots. Compared to using free mode shapes, fewer number of constrained mode shapes is required in order to obtain the accurate resonant response of a system with friction dampers when the contact state is fully stick. It is more efficient to predict the nonlinear forced response of bladed disks taking account of the nonlinear force at blade-disk joints. Based on this method, the effect of Boundary Conditions on the resonant frequencies and forced response levels under different engine rotational speeds is investigated. Large error in the prediction of forced response levels under low engine rotational speed by using traditional methods is found. The effects of preload distribution at blade roots and excitation level are also investigated.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In