0

Full Content is available to subscribers

Subscribe/Learn More  >

Low Cycle Fatigue Crack Initiation of Rotating Structures Under Biaxial Stress States

[+] Author Affiliations
Chao Zhang

Pratt & Whitney Canada Corp., Longueuil, QC, Canada

Paper No. GT2009-59249, pp. 157-162; 6 pages
doi:10.1115/GT2009-59249
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4887-6 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

Rotating structures can experience biaxial stress states with a wide range of biaxiality ratios on structure surfaces. Low cycle fatigue (LCF) crack initiation in such conditions demonstrates different fatigue characteristics in terms of crack orientation, fatigue life, etc. The biaxial stress states can be categorized into two types: in-phase and out-of-phase under which fatigue characteristics can be significantly different according to rig test results. This paper presents an investigation of LCF crack initiation under in-phase and out-of-phase biaxial stress states based on rig test results of a nickel alloy. The crack orientations are reviewed and discussed at different stress states. Relations of biaxial LCF life debit factor vs biaxiality ratio are derived (the debit factor is defined as a ratio of the LCF life at a biaxial stress state to the LCF life at corresponding uniaxial stress state which has same cyclic and mean stresses as the primary cyclic and mean stressees of the biaxial stress state). The rig test results showed that the crack orientation is usually normal to the primary stress vector under in-phase biaxial stress states but is inclined to the primary stress vector under out-of-phase stress states. As per the derived biaxial LCF life debit factors, the LCF life was found to be slightly reduced with increasing biaxiality ratios under in-phase biaxial stress states but significantly reduced under out-of-phase biaxial stress states compared with corresponding uniaxial primary stress states. The equivalent cyclic stress fatigue criterion is also employed to theoretically model the biaxial LCF life debit factor under in-phase biaxial stress states. The hydrostatic cyclic stress is included in the equivalent cyclic stress in order to take into account the hydrostatic cyclic pressure effects. The equivalent cyclic stress in the criterion can physically reflect the materials’ ductility reduction under in-phase multiaxial stress states.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In