Full Content is available to subscribers

Subscribe/Learn More  >

Research and Development of Minitype Twin-Bladed Air Turbine

[+] Author Affiliations
Shih-Chun Wang, Kuang-Yuh Huang

National Taiwan University, Taipei, Taiwan

Paper No. GT2009-59702, pp. 175-181; 7 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 5: Microturbines and Small Turbomachinery; Oil and Gas Applications
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4886-9 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


In order to improve the machining efficiency of ultra-precision and micro fabrication technology, a high speed spindle is essential for the minitype tools widely applied in systems such as PCB drilling machines, micro fabrication machines, dental handpieces, etc. To realize the high speed performance, the air driven turbine is verified to be more feasible than the electromagnetic actuator. Furthermore, the operational efficiency and quality of the high speed spindle are significantly influenced by the turbine blades and the bearings respectively. Through detailed configurational studies and performance analyses on diverse minitype turbine blades, we have derived the efficiency- and quality-influential parameters. And based on optimization results, we have developed a novel type of twin bladed air turbine (TB-air turbine), which consists of two parallel blades with an angular offset. The offseted twin blades can efficiently and smoothly transform pneumatic energy into rotational energy. Therefore, steady driving force and less dynamic unbalance are able to be easily achieved for reducing nervous disturbances such as vibration, noise, and wear. By applying finite element analytical method, the operational performances and quality of the new developed twin bladed air turbine such as rotational speed, torque, vibration and noise were analyzed for comprehending influences of the design parameters and the operational parameters. While the inlet angle, the blade shape and its geometric parameters are the dominant design parameters; the inlet pressure and mass flow rate, and the outlet pressure are the main operational parameters. Through the turbine blades, the pneumatic energy will be transformed into operational energy in form of the flow field and the pressure distribution and the energy loss in form of turbulence. Also by integrating knowledge of production technology, a neat design of the turbine blades suitable for automatic manufacturing process is developed. And furthermore, through an elaborate layout of the flow guiding, a minimum rotational runout can be effectively achieved without any complicate and costly dynamic balancing process. Consequently, it has significantly depressed the stream noise and raised the operation lifetime of bearings. According to our experimental verification, the vibration and the stream noise of our TB-air turbines are 60% and 50% lower than traditional counterparts respectively. Our developed minitype spindle with novel TB-air turbine can efficiently realize high speed rotation with high torque, less vibration and less noise.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In