0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer on a Turbocharger Under Constant Load Points

[+] Author Affiliations
A. Romagnoli, Ricardo Martinez-Botas

Imperial College London, London, UK

Paper No. GT2009-59618, pp. 163-174; 12 pages
doi:10.1115/GT2009-59618
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 5: Microturbines and Small Turbomachinery; Oil and Gas Applications
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4886-9 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

The processes occurring in turbo machinery applications are frequently treated as adiabatic. However, in a turbocharger significant heat transfer occurs, leading to a deficit of turbocharger performance. The overall objective of this experimental work is to improve the understanding of the heat transfer process taking place in a turbocharger when installed on an internal combustion engine. In order to do this, beyond the standard set of measurements needed to define the turbo operating point, a large number of thermocouples were installed on the turbocharger. The tests results allow the quantification of the temperatures within the turbocharger and revealed that a nonuniform temperature distribution exists on the compressor and turbine casings. This is partly attributed to the proximity of the turbocharger to the engine. This process plays a role on the deterioration of the compressor efficiency when compared to the corresponding adiabatic efficiency. A correlation that allows the calculation of the compressor exit temperature is proposed. The method uses the surface temperature of the bearing housing; it was validated against experimental data with deviations no larger than 3%. A simplified 1-dimensional heat transfer model was also developed and compared with experimental measurements. The algorithms calculate the heat transferred through the turbocharger, from the hot end to the cold end by means of lump masses. The compressor performance deterioration from the adiabatic map is predicted.

Copyright © 2009 by ASME
Topics: Heat transfer , Stress

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In