Full Content is available to subscribers

Subscribe/Learn More  >

Development of a µ-Scale Turbine Expander for Energy Recovery

[+] Author Affiliations
Marcus Keding, Piotr Dudzinski, Martin Tajmar

Austrian Research Centers GmbH - ARC, Seibersdorf, Austria

Reinhard Willinger, Klaus Käfer

Vienna University of Technology, Vienna, Austria

Paper No. GT2009-59092, pp. 21-27; 7 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 5: Microturbines and Small Turbomachinery; Oil and Gas Applications
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4886-9 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


Waste heat is a primary source of energy loss in many applications. A number of developments around a micro rocket engine at the Austrian Research Centers (ARC) promise innovative energy recovery and micro power generation solutions. Here we focus on the investigation of micro technologies for application in HVAC (heating, ventilating, and air conditioning) systems. The use of μ-scale turbine expanders for work recovery in transcritical CO2 heat pump processes has been identified as most interesting and promising for the application in HVAC cases. One of the main drawbacks of transcritical CO2 heat pumps is the lower COP (coefficient of performance) compared to conventional heat pump systems which originates from the non isothermal heat rejection in the gas cooler. This drawback can be compensated by utilizing the pressure difference between the high pressure and low pressure part of the heat pump for work recovery. This is feasible as the pressure difference is considerably larger in case of CO2 heat pumps compared to conventional systems. Work recovery can be realized by substituting the expansion valve between the high and low pressure side by an expansion machine. Due to the low flow rate of the working fluid, the turbine type is based on the Pelton turbine with specific two phase flow turbine blades. In addition to the turbine part a magnetic coupling, miniature bearings and a small scale generator are important parts of the system. Thermodynamic simulations showed an absolute microturbine power yield between 60 W and 150 W for a 2 kW heating system.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In