0

Full Content is available to subscribers

Subscribe/Learn More  >

Long-Term Oxidation Behavior of Various Chromia-Forming Alloys: Effect of Thermal Cycle Length

[+] Author Affiliations
Vinay P. Deodeshmukh, S. Krishna Srivastava

Haynes International, Inc., Kokomo, IN

Paper No. GT2009-60007, pp. 885-892; 8 pages
doi:10.1115/GT2009-60007
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4885-2 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

Thermal cycle length can severely affect long-term oxidation behavior of high-temperature alloys. The present study is focused on the effect of thermal cycle length (twelve 30-day cycles versus six 60-day cycles) on the long-term (360 days) oxidation behavior of various chromia-forming alloys at 982°C, 1092°C, and 1149°C (1800°F, 2000°F, and 2100°F). The alloys included in this study are HAYNES® 230® alloy, 617 alloy, HR-160® alloy, HR-120® alloy, and 800HT® alloy. Alloy performances were assessed by analyzing the weight-change behavior and extent of attack as measured by metal loss and average internal penetration. The 230 and 617 alloys exhibited excellent oxidation resistance under both cycling conditions, presumably due to their ability to form and maintain adherent oxide scale. In particular, alloys with high Fe contents underwent accelerated oxidation attack. There was a significant increase in the extent of attack with increase in number of cycles (i.e. shorter cycle length). Moreover, the effect of cycle length was most pronounced at the highest test temperature (1149°C), and a strong correlation was found between oxidation kinetics and alloy composition as well as oxidation kinetics and the cycle length. HAYNES, 230, HR-160, HR-120 are registered trademarks of Haynes International, Inc. 800HT is a registered trademark of Special Metals Corporation.

Copyright © 2009 by ASME
Topics: Alloys , Cycles , oxidation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In