Full Content is available to subscribers

Subscribe/Learn More  >

The Evaluation of Coefficient of Friction for Representative and Predictive Finite Element Modelling of the Inertia Friction Welding

[+] Author Affiliations
M. B. Mohammed, C. J. Bennett, T. H. Hyde, E. J. Williams

University of Nottingham, Nottingham, UK

Paper No. GT2009-59451, pp. 829-837; 9 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4885-2 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


Inertia friction welding is the process in which stored kinetic energy in a flywheel is converted to heat by relative sliding movement between surfaces of axi-symmetric components to achieve a weld in the solid-state. The work in this paper relates to the production of dual-alloy shafts for aeroengines. Frictional characteristics determine the conditions at the weld interface and these are controlled by rotational velocity and applied axial pressure. So-called representative and predictive methods have been developed to evaluate friction conditions during the process and these are discussed in this paper. Weld data for the dissimilar weld between a high strength steel and a nickel-based super-alloy were provided by Rolls-Royce and MTU Aero Engines. The finite element software package DEFORM-2D is used to develop coupled thermo-mechanical axi-symmetric models. In previous work, methods employed to evaluate the efficiency of mechanical energy utilised during a weld, a parameter of great importance for numerical analysis, are not clear. Previous predictive approaches have employed test/weld data in one way or another to obtain the interface friction coefficient. This paper proposes a formula that incorporates the value of the mechanical energy efficiency of the welding machine into the calculation of coefficient of friction for representative modelling. It also introduces a predictive approach based on sub-layer flow theory to predict frictional behaviour during the welding process that is independent of test/weld data.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In