0

Full Content is available to subscribers

Subscribe/Learn More  >

Real-Time Monitoring of the Weld Penetration State in Laser Welding of High-Strength Steels by Airborne Acoustic Signal

[+] Author Affiliations
Wei Huang, Shanglu Yang, Dechao Lin, Radovan Kovacevic

Southern Methodist University, Dallas, TX

Paper No. GT2009-59274, pp. 799-805; 7 pages
doi:10.1115/GT2009-59274
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4885-2 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

Nowadays high-strength steels have great applications in different industries due to their good combination of formability, weldability, and high strength-to-weight ratio. To guarantee a high quality without the presence of defects such as partial penetration (PP) in the laser welding of high-strength steels, it is very important to on-line monitor the whole welding process. While optical sensors are widely applied to monitor the laser welding process, we are proposing to use a microphone to acquire the airborne acoustic signals produced during laser welding of high-strength steel DP980. In order to extract valuable information from a very noisy signal acquired in a harsh environment such as industrial welding, spectral subtraction (SS), a noise reduction method is used to process the acquired airborne sound signals. Furthermore, by applying the power spectrum density (PSD) estimation method, the frequency characteristics of the acoustic signals are analyzed as well. The results indicate that the welds in full penetration (FP) and PP produce different signatures of acoustic signals that are characterized with different sound pressure levels and frequency distributions ranging from 500 Hz to 1500 Hz. Based on these differences, two algorithms are developed to distinguish the FP from PP during the laser welding process. A real-time monitoring system is implemented by a LabVIEW-based graphic program developed in this research. A feedback control system that could guarantee the FP will be developed in the near future.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In