0

Full Content is available to subscribers

Subscribe/Learn More  >

A Modeling Approach to Predict Fretting Fatigue on Highly Loaded Blade Roots

[+] Author Affiliations
Patrick Wackers, Victor Arrieta

MTU Aero Engines GmbH, Munich, Bavaria, Germany

Marcel Alquezar-Getan

ATENA Engineering, Munich, Bavaria, Germany

Andrei Constantinescu, Habibou Maitournam

LMS-CNRS, École Polytechnique Palaiseau, Palaiseau Cedex, France

Paper No. GT2009-59228, pp. 777-787; 11 pages
doi:10.1115/GT2009-59228
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4885-2 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

A lifing technique for predicting fretting fatigue on highly loaded blade-disk attachments has been developed and calibrated. The approach combines extensive testing on nickel and titanium based alloys using a specially devised multiaxial fretting test machine and an analytical lifing procedure based on finite element contact calculations and multiaxial shakedown fatigue models. In order to reproduce realistic operational conditions and standardize testing conditions a special fretting fatigue testing machine with high temperature testing capabilities was developed. The machine was employed to perform systematic testing under prescribed load and displacement conditions at representative temperatures. Making use of FEA the rig test results were calculated to identify relevant parameters such as friction coefficient, slip conditions and machine compliance. The computation procedure involves the calculation of several major loading cycles until a stabilized response of the structure is achieved. The material response is assumed to be elasto-plastic and a nonlinear friction law (space and time) was applied. From the computed mechanical variables, a several life prediction models are benchmarked to establish their capabilities to predict fretting-fatigue life. Finally, a most promising life estimation procedure was applied to predict life in a real compressor blade-disk attachment. Predicted failure location and number of cycles to failure are compared against engine tests results. The experimental-analytical approach has the potential to predict fretting fatigue risk during the design phase on highly loaded joints as well as estimating the preventive overhaul intervals for parts already in service.

Copyright © 2009 by ASME
Topics: Fatigue , Modeling , Blades

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In