0

Full Content is available to subscribers

Subscribe/Learn More  >

Gas Turbine Compressor Performance Characteristics During Wet Compression: Influence of Polydisperse Spray

[+] Author Affiliations
Rakesh K. Bhargava

Foster Wheeler USA Corp., Houston, TX

Michele Bianchi, Francesco Melino, Antonio Peretto

DIEM - University of Bologna, Bologna, Italy

Mustapha Chaker

Bechtel Corporation, Houston, TX

Pier Ruggero Spina

ENDIF - University of Ferrara, Ferrara, Italy

Paper No. GT2009-59907, pp. 655-666; 12 pages
doi:10.1115/GT2009-59907
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4885-2 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

The available literature shows that there exists a lack of understanding about the impact of wet compression, involving two-phase flow, on the physics of flow in the compressor stages of a gas turbine engine. In recent years, analytical models have been proposed which provide effects of wet compression on the overall compressor performance and in few studies on the stage-by-stage performance. In spite of the fact that the wet compression technology for power augmentation has been commercially implemented on numerous gas turbines from all the major gas turbine manufacturers, many issues such as, effects of polydisperse spray, droplets dynamics, influence on the performance characteristics of individual stages, stage and overall surge margin, etc., remain not completely understood. This investigation clearly shows importance of considering effects of polydisperse spray on the overall and stage-by-stage compressor performance characteristics. The presented results show that for a given droplets distribution and ambient condition, later stages of a compressor are prone to reduced surge margin under wet compression process due to redistribution of stage loading. Moreover, the study shows that smaller distributions allow the achievement of higher performance, but the compressor surge is reached with a lower amount of injected water.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In