Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Coal-Based Hydrogen Production System With Low CO2 Emissions

[+] Author Affiliations
Gang Xu, Yongping Yang, Liqiang Duan

North China Electric Power University, Beijing, China

Hongguang Jin, Wei Han, Lin Gao

Chinese Academy of Sciences, Beijing, China

Paper No. GT2009-59787, pp. 307-315; 9 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4885-2 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


In this paper, we have proposed a novel coal-based hydrogen production system with low CO2 emission. In this novel system, a pressure swing adsorption H2 production process and a CO2 cryogenic capture process are well integrated to gain comprehensive performance. In particular, through sequential connection between the PSA H2 production process and the CO2 capture unit, the CO2 concentration of PSA purge gas that entering the CO2 capture unit can reach as high as 70%, which results in as much as 90% of CO2 to be separated from mixed gas as liquid at temperature of −55°C. This will reduce the quantity and quality of cold energy required for cryogenic separation method, and the solidification of CO2 is avoided. The adoption of cryogenic energy to capture CO2 enables direct production of liquid CO2 at low pressure, and thereby saves a lot of compression energy. Besides, partial recycle of the tail gas from CO2 recovery unit to PSA inlet can help to enhance the amount of hydrogen product and lower the energy consumption for H2 production. As a result, the energy consumption for the new system’s hydrogen production is only 196.8 GJ/tH2 with 94% of CO2 captured, which is 9.2% lower than that of the coal-based hydrogen production system with Selexol CO2 removal process, and is only 2.6% more than that of the coal-based hydrogen production system without CO2 recovery. What’s more, the energy consumption of CO2 recovery is expected to be reduced by 20–60% compared to that of traditional CO2 separation processes. Further analysis on the novel system indicates that synergetic integration of the H2 production process and cryogenic CO2 recovery unit, along with the synthetic utilization of energy, plays a significant role in lowering energy penalty for CO2 separation and liquefaction. The promising results obtained here provide a new approach for CO2 removal with low energy penalty.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In