0

Full Content is available to subscribers

Subscribe/Learn More  >

Electricity and Hydrogen Co-Production From Coal and Biomass

[+] Author Affiliations
Leandro Galanti, Alessandro Franzoni, Alberto Traverso, Aristide F. Massardo

University of Genoa, Genova, Italy

Paper No. GT2009-59068, pp. 33-42; 10 pages
doi:10.1115/GT2009-59068
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4885-2 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

This paper presents and discusses the results of a complete thermoeconomic analysis of an integrated power plant for co-production of electricity and hydrogen via pyrolysis and gasification processes, applied to an existing large steam power plant (ENEL Brindisi power plant-660 MWe ). The two considered technologies produce syngas with different characteristics in terms of temperature, pressure and composition, and this has a significant effect on the layouts of the complete systems proposed in the paper. Moreover, the proximity of a hydrogen production and purification plants to an existing steam power plant favour the inter-exchange of energy streams, mainly in the form of hot water and steam, which reduces the costs of auxiliary equipment. Various coals (Ashland, South African and Sardinian Sulcis coal) and mixtures of South African coal and biomass (Poplar) are considered in this study, in order to explore the real potential of mixed fuels in terms of impact on plant economics and reducing CO2 emissions. Furthermore, the high quality of the hydrogen, produced through a Pressure Swing Adsorption unit or a dense Membrane unit, allows it to be used for distributed generation (e.g. by microturbine, Stirling engine, etc.) as well as public transport (using PEM fuel cells). The results were obtained using WTEMP thermoeconomic software [9], developed by the TPG (Thermochemical Power Group) of the University of Genoa, and this project has been carried out within the framework of the FISR National project “Integrated systems for hydrogen production and utilization in distributed power generation” [10]. The complete systems proposed here can represent an attractive approach to flexible hydrogen-electricity co-production.

Copyright © 2009 by ASME
Topics: Biomass , Coal , Hydrogen

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In