0

Full Content is available to subscribers

Subscribe/Learn More  >

Off-Design Performance Investigation of a Low Calorific Gas Fired Two-Shaft Gas Turbine

[+] Author Affiliations
Pontus Eriksson

Volvo Aero Corporation, Malmö, Sweden

Magnus Genrup, Klas Jonshagen, Jens Klingmann

Lund University, Lund, Sweden

Paper No. GT2009-59067, pp. 21-32; 12 pages
doi:10.1115/GT2009-59067
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4885-2 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

Gas turbine systems are predominantly designed to be fuelled with gaseous fuels within a limited Wobbe index range (typically HHV = 45–55 MJ/Nm3 or 1200–1480 Btu/scf). When low calorific fuel gases are fired, the engine will be forced to operate outside its design envelope. The added mass flow will typically raise the cycle pressure ratio and in two-shaft designs also raise the gas generator shaft speed. Typical constraints to be considered due to the altered fuel composition are pressure loads, shaft torques, shaft overspeeds, centrifugal overloading of disks and blades, combustor flameout, surge and flutter limits for the turbomachinery. This poses limitations to usable fuel choices. In this study, the response of a natural gas fired simple cycle two-shaft gas turbine is investigated. A lean premixed combustor is also included in the model. Emphasis has been put on predicting the turbomachinery and combustor behavior as different amounts of N2 or CO2 are added to the fuel path. These two inerts are typically found in large quantities in medium and low calorific fuels. The fuels lower heating value is thus gradually changed from 50 MJ/kg (21.5 kBtu/lb) to 5MJ/kg (2.15 kBtu/lb). A model, based on the Volvo Aero Corp. VT4400 gas turbine (originally Dresser Rand DR990) characterized by one compressor and two expander maps is considered. The free turbine is operated at fixed physical speed. The operating point is plotted in the compressor map and the turbine maps at three distinct firing temperatures representing turndown from full load to bleed opening point. Gas generator speed and shaft power are shown. Surge margin and power turbine power is plotted. Overall efficiency is computed. The behavior of the Volvo lean premixed combustor is also discussed. Air split, primary zone equivalence ratio and temperature is plotted. Combustor loading, combustion intensity and pressure drop is graphed. Results are, as far as possible, given as non-dimensional parameter groups for easy comparison with other machines.

Copyright © 2009 by ASME
Topics: Design , Gas turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In