Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Radial Location of Nozzles on Heat Transfer in Pre-Swirl Cooling System

[+] Author Affiliations
V. U. Kakade, G. D. Lock, M. Wilson, J. M. Owen, J. E. Mayhew

University of Bath, Bath, UK

Paper No. GT2009-59090, pp. 1051-1060; 10 pages
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4884-5 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME


This paper investigates heat transfer in a rotating disc system using pre-swirled cooling air from nozzles at high and low radius. The experiments were conducted over a range of rotational speeds, flow rates and pre-swirl ratios. Narrow-band thermochromic liquid crystal (TLC) was specifically calibrated for application to experiments on a disc rotating at ∼ 5000 rpm and subsequently used to measure surface temperature in a transient experiment. The TLC was viewed through the transparent polycarbonate disc using a digital video camera and strobe light synchronised to the disc frequency. The convective heat transfer coefficient, h, was subsequently calculated from the one-dimensional solution of Fourier’s conduction equation for a semi-infinite wall. The analysis accounted for the exponential rise in the air temperature driving the heat transfer, and for experimental uncertainties in the measured values of h. The experimental data was supported by ‘flow visualisation’ determined from CFD. Two heat transfer regimes were revealed for the low-radius pre-swirl system: a viscous regime at relatively low coolant flow rates; and an inertial regime at higher flow rates. Both regimes featured regions of high heat transfer where thin, boundary layers replaced air exiting through receiver holes at high radius on the rotating disc. The heat transfer in the high radius pre-swirl system was shown to be dominated by impingement under the flow conditions tested.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In