0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance of a Dual Side Substrate Metrology System for Micromachining Lithography

[+] Author Affiliations
Daniel Schurz, Warren W. Flack

Ultratech, Inc., San Jose, CA

Paper No. NANO2004-46040, pp. 103-112; 10 pages
doi:10.1115/NANO2004-46040
From:
  • ASME 2004 3rd Integrated Nanosystems Conference
  • Design, Synthesis, and Applications
  • Pasadena, California, USA, September 22–24, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4177-4 | eISBN: 0-7918-3749-1
  • Copyright © 2004 by ASME

abstract

Advances in micromachining (MEMS) applications such as optical components, inertial and pressure sensors, fluidic pumps and radio frequency (RF) devices are driving lithographic requirements for tighter registration, improved pattern resolution and improved process control on both sides of the substrate. Consequently, there is a similar increase in demand for advanced metrology tools capable of measuring the Dual Side Alignment (DSA) performance of the lithography systems. There are a number of requirements for an advanced DSA metrology tool. First, the system should be capable of measuring points over the entire area of the wafer rather than a narrow area near the lithography alignment targets. Secondly, the system should be capable of measuring a variety of different substrate types and thicknesses. Finally, it should be able to measure substrates containing opaque deposited films such as metals. In this paper, the operation and performance of a new DSA metrology tool is discussed. The UltraMet 100 offers DSA registration measurement at greater than 90% of a wafer’s surface area, providing a true picture of a lithography tool’s alignment performance and registration yield across the wafer. The system architecture is discussed including the use of top and bottom cameras and the pattern recognition system. Experimental data is shown for tool performance in terms of repeatability and reproducibility over time. The requirements for tool accuracy and methods to establish accuracy to a NIST traceable standard are also discussed.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In