0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of a Multiple Jet Impingement System

[+] Author Affiliations
G. Arvind Rao

Techniche Universiteit Delft, Delft, The Netherlands

Myra Kitron-Belinkov

Kinneret College on the Sea of Galilee, Emek-Hayarden, Israel

Yeshayahou Levy

Technion - Israel Institute of Technology, Haifa, Israel

Paper No. GT2009-59719, pp. 629-639; 11 pages
doi:10.1115/GT2009-59719
From:
  • ASME Turbo Expo 2009: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Orlando, Florida, USA, June 8–12, 2009
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4884-5 | eISBN: 978-0-7918-3849-5
  • Copyright © 2009 by ASME

abstract

Jet impingement is known to provide higher heat transfer coefficients as compared to other conventional modes of single phase heat transfer. Jet impingement has been a subject of research for a long time. Single jets have been studied extensively for their heat transfer and flow characteristics. However, for practical usage, multiple jets (in the form of arrays) have to be used for increasing the total heat transfer over a given area. Most of the research on multiple impinging jets have focused on evaluating heat transfer correlations for such arrays in the turbulent regime (Re >2500). The focus of the present paper is on experimental investigation of a large array of impinging jets in the low Reynolds number regime (<1000) and subsequently numerically modeling the same array by using existing Computational Fluid Dynamics tools in order to study the physical phenomena within such a complex system. Different turbulence models were used for modeling the fluid flow within these impinging jets and it was found that the SST k-ω model is the most suitable. Results obtained from CFD analysis are in reasonable agreement with experimental values. It was observed that CFD simulations over predicted the Nusselt number and pressure drop when compared to the experimentally obtained values. It was also observed that the decrease in Nusselt number along the streamwise direction of the array was not monotonic. This could be due to the complex flow field resulting from interaction between the crossflow and the impinging jets in the wall jet region. It is anticipated that results obtained from the present work will provide greater insight into the flow behavior and the heat transfer mechanism occurring in multiple impinging jets.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In