0

Full Content is available to subscribers

Subscribe/Learn More  >

Practical Method of Updating Stochastic Remaining Life of Pipelines Using ILI Data

[+] Author Affiliations
Margarita G. Malyukova, Sviatoslav A. Timashev, Igor L. Maltsev

Russian Academy of Sciences, Ekaterinburg, Russia

Paper No. IPC2004-0295, pp. 2487-2492; 6 pages
doi:10.1115/IPC2004-0295
From:
  • 2004 International Pipeline Conference
  • 2004 International Pipeline Conference, Volumes 1, 2, and 3
  • Calgary, Alberta, Canada, October 4–8, 2004
  • Conference Sponsors: International Petroleum Technology Institute
  • ISBN: 0-7918-4176-6 | eISBN: 0-7918-3737-8
  • Copyright © 2004 by ASME

abstract

The paper describes a new practical method of updating the stochastic remnant life of pipelines with defects using ILI data. The paper describes a comprehensive algorithm for assessing pipeline remnant life taking into account the stochastic results of in-line inspection (ILI). It is assumed that the pipeline segment wall has a longitudinal external crack of semi-elliptical form and is described by the J-integral. The limit state function (LSF) is described as the difference of the critical and current value of the J-integral. The latter is calculated for the current time of pipe performance and is assumed known due to monitoring of the pumping equipment. The critical crack depth is defined using the notion of fracture toughness and the J-integral approach. The algorithm contains solutions of three sequentially interconnected problems. First, the deterministic problem of fatigue crack growth (FCG) is analyzed. Then the stochastic FCG is analyzed. The probability of failure assessment algorithm is designed on the basis of the authors’ version of the adaptive important sampling (AIS) procedure. The main steps of the AIS algorithm are described in detail. The samples are generated in such a way, that at all times a majority of samples belong to the fracture region. Finally, the results of the latest ILI are fused into the algorithm, providing best possible assessment of pipeline remnant life as a random variable. The remnant life update for pipeline segment with crack-like defects using ILI data takes into account three possible outcomes: defect not discovered: defect is discovered but not measured; defect is discovered and measured. This result permits solving most important problems of pipeline maintenance: prioritization of pipeline segments for repair/rehabilitation; optimization of the time between ILI; minimization of pipe operational risk. Two real cases are described of assessing the probability of fracture/leak of a pipeline section with an external crack at different periods of its performance. The described approach currently is being generalized for the case of multiple stress corrosion SC cracks.

Copyright © 2004 by ASME
Topics: Pipelines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In