Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental and Numerical Study of the Effect of Pre-Strain on the Fracture Toughness of Line Pipe Steel

[+] Author Affiliations
Andrew Cosham, Phil Hopkins

Penspen Integrity (Andrew Palmer and Associates), Newcastle upon Tyne, UK

Andrew Palmer

Cambridge University, Cambridge, UK

Paper No. IPC2004-0085, pp. 1635-1652; 18 pages
  • 2004 International Pipeline Conference
  • 2004 International Pipeline Conference, Volumes 1, 2, and 3
  • Calgary, Alberta, Canada, October 4–8, 2004
  • Conference Sponsors: International Petroleum Technology Institute
  • ISBN: 0-7918-4176-6 | eISBN: 0-7918-3737-8
  • Copyright © 2004 by ASME


Oil and gas pipelines may be subject to high plastic strains, either intentionally as a result of the method of installation, or the requirements of the design and operation, or accidentally (due to mechanical damage), before they enter service (transportation, construction/installation, etc.) and during operation. Pre-strain is introduced by denting, cold bending, land slides, subsidence, frost heave, ice gouging, earthquake induced ground movement, reeling, installation in deep water, and wrinkling or buckling. Material subjected to pre-strain will have different material properties to that of the virgin material. Previous experimental studies have indicated that pre-strain has a detrimental effect on the fracture toughness of steel: it reduces the resistance to crack initiation, reduces the resistance to crack growth, and increases the transition temperature. To investigate the effect of pre-strain on the fracture toughness of line pipe steel a programme of tests and numerical analyses has been undertaken. The results of tensile, notched tensile, fracture toughness (J-integral and CTOD) and Charpy V-notch impact tests of virgin (not pre-strained) material, prestrained material and artificially strain aged material are reported. It is shown that the effect of pre-strain can be simulated numerically using a finite element model incorporating the influence of material damage through a Gurson-Tvergaard constitutive model. The properties of the virgin material that influence the effect of pre-strain on toughness are discussed. The role of material damage (void nucleation and growth, etc.) during the introduction of pre-strain is shown to be less significant than the changes to the tensile properties and ductility caused by pre-strain. The effect of tensile pre-strain on fracture toughness can be characterised in terms of the effect of pre-strain on the stress-strain characteristics of the material, the critical fracture strain, and several parameters that relate to the conditions for ductile fracture (or cleavage fracture). A simple, engineering approximation to the effect of pre-strain on fracture toughness for application to pipeline design and fitness-for-purpose assessment is proposed in terms of the true strain at the tensile strength of the virgin material.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In