Full Content is available to subscribers

Subscribe/Learn More  >

Guidelines to Develop Fitness-for-Service Assessments in Oil Pipelines Exposed to Corrosive and Geotechnical Environments

[+] Author Affiliations
Rafael G. Mora

CC Technologies Canada, Calgary, AB, Canada

Carlos Vergara, Guy Krepps

Oleoducto Central S.A., Bogotá, Colombia

Paper No. IPC2004-0588, pp. 1397-1405; 9 pages
  • 2004 International Pipeline Conference
  • 2004 International Pipeline Conference, Volumes 1, 2, and 3
  • Calgary, Alberta, Canada, October 4–8, 2004
  • Conference Sponsors: International Petroleum Technology Institute
  • ISBN: 0-7918-4176-6 | eISBN: 0-7918-3737-8
  • Copyright © 2004 by ASME


Industry standards (i.e. API 1160, ASME B31.4 and B31.8S-2001, CSA-Z662-2003) and regulations (i.e. US DOT 49 Parts 195-2002 and 192-2003, and NEB On-shore 99) have delineated the risk-based elements of oil and gas pipeline integrity management programs. A Fitness-For-Service Assessment is part of an overall Integrity Management Program that is implemented for the pipeline system depending on the required pipeline operational conditions, severity of integrity threats, and their impact or consequences to the public, environment and employees. This paper provides guidelines for pipeline operators of oil pipeline systems exposed to corrosive and geotechnical sensitive environments and high consequence areas to develop long term integrity plans. In this case, the pipeline integrity plans were prepared based on the integration of data and assessments such as metal loss, geometry and strain in-line inspections, product corrositivity, cathodic protection, geotechnical hazard identification, and pipe class location/high consequence areas. Guidelines for developing near-term integrity plans are herein provided based on best industry practices and regulations. In 2002, Oleoducto Central S.A. (Ocensa) and CC Technologies initiated the Phase 1 of the Fitness-for-Service assessment of 698 km of NPS 16/30 crude oil pipeline from Cupiagua to Coveñas. Phase 1 was comprised of an internal corrosion study to assess the corrosivity of the product and its impact in the future. Corrosivity of the crude oil was determined from laboratory testing and correlated to the pipeline operational and topographical conditions. In 2003, the Phase 2 of the Fitness-for-Service assessment was comprised of a review of the near-term maintenance program and the development of the long-term maintenance program. The long-term integrity plan program for corrosion features was developed using a deterministic and probabilistic corrosion growth modeling to determine excavation/repair and re-inspection interval alternatives. The corrosion growth modeling took into account the in-line inspection tool accuracy based on the field validation program. The most cost effective alternative was identified by using a cost benefit analysis technique. This implemented approach contributed to timely schedule maintenance activities. In addition, the selected excavations confirmed with high confidence the results from the Ocensa-CC Technologies Canada predictability model. Geometry features reported by the geometry/inertial in-line inspection were initially evaluated, and correlated to the corrosion in-line inspection data, and the geotechnical hazard study to identify potential locations of slope instability, river-crossing scouring for assessing internal corrosion criticality. Strain areas were also assessed and correlated to pipe wall deformation and potential areas of land movement. Pipe class location limits were determined based on latest dwelling locations and distribution, and then correlated to the reported corrosion features for verifying minimum safety factors. The long-term maintenance program was integrated from all assessments performed on the identified integrity threats. As a result, guidelines were prepared for implementing technically sound and economically-optimized long-term inline inspection, excavation and repair plans.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In