0

Full Content is available to subscribers

Subscribe/Learn More  >

Demonstration of Gas-Permeable Seals for Radioactive Waste Repositories: Laboratory and In-Situ Experiments

[+] Author Affiliations
Joerg Rueedi, Paul Marschall

Nagra, Wettingen, Switzerland

Paper No. ICEM2011-59224, pp. 1413-1420; 8 pages
doi:10.1115/ICEM2011-59224
From:
  • ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
  • Reims, France, September 25–29, 2011
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-5498-3
  • Copyright © 2011 by ASME

abstract

In low/intermediate-level waste (L/ILW) repositories, anaerobic corrosion of metals and degradation of organic materials produce hydrogen, methane, and carbon dioxide. Gas migration in a L/ILW repository is one of the processes evaluated in the safety assessment of deep geological disposal in low-permeability formations, in particular with respect to the development of gas pressures in the repository caverns which could negatively affect the host rock or the engineered barrier system (EBS). In order to restrict build-up of gas overpressures in the emplacement caverns, Nagra (National Cooperative for the Disposal of Radioactive Waste, Switzerland) has proposed design options aimed at increasing the gas transport capacity of the backfilled underground structures, compromising neither the low hydraulic conductivity nor the radionuclide retention capacity of the EBS (Nagra, 2008). They involve specially designed backfill and sealing materials such as high porosity mortars as backfill materials for the emplacement caverns and sand/bentonite (S/B) mixtures with a bentonite content of 20% to 30% for the seals themselves and for backfilling other underground structures. These increased gas permeability materials can supplement the gas flow that is expected to occur through the excavation damaged zone (EDZ) and avoid the creation of overpressures. Preliminary experimental studies have confirmed the gas transport capacity of the S/B mixtures and demonstrated the ability to design mixtures with specific target permeabilities for water and gas flow (Nagra, 2008). Two-phase flow modelling studies have shown that the gas transport capacity of seals is largely dependent on their permeability and length. More detailed models of sealing elements show a rather complex history of seal saturation during the early saturation phase and the later gas escape phase (Gaus et al., 2010). Note, however, that current modelling approaches are based on parameters and conceptual understanding of small-scale laboratory experiments. Two large(r) scale experiments which aim at validating and, if necessary, improving current conceptual models for the resaturation and gas invasion processes into S/B seals and the determination of up-scaled gas / water permeabilities of S/B seals (i.e. two-phase flow parameters for large-scale models) have been initiated and will be highlighted in the paper. The first one, a mock-up experiment, was set up in 2010 as part of the EU 7th FP project FORGE, aiming at demonstrating seal performance on an intermediate (decimetre scale). The second one is a large-scale experiment (metre-scale), the Gas-Permeable Seal Test (GAST), which was also initiated in 2010 at the Grimsel Test Site (GTS). For GAST, a seal will be emplaced at the GTS to demonstrate the effective functioning of gas-permeable seals on a realistic scale and with realistic boundary conditions (‘proof of concept’).

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In