Full Content is available to subscribers

Subscribe/Learn More  >

Enhanced Bioremediation as a Cost Effective Approach Following Thermally Enhanced Soil Vapour Extraction for Sites Requiring Remediation of Chlorinated Solvents

[+] Author Affiliations
Anna-Maria Kozlowska, Manjit S. Kahlon

Provectus Group Ltd., Harwell, Oxfordshire, UK

Steve R. Langford

Provectus Group Ltd., Chelmsford, Essex, UK

Haydn G. Williams

EnviroGene Ltd., Ystrad, Hengoed, UK

Paper No. ICEM2009-16296, pp. 603-613; 11 pages
  • ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management, Volume 2
  • Liverpool, UK, October 11–15, 2009
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4408-3 | eISBN: 978-0-7918-3865-X
  • Copyright © 2009 by ASME


Thermally enhanced bioremediation can be a more cost-effective alternative to full scale in-situ thermal treatment especially for sites contaminated with chlorinated solvents, where reductive dechlorination is or might be a dominant biological step. The effect of Thermally Enhanced Soil Vapour Extraction (TESVE) on indigenous microbial communities and the potential for subsequent biological polishing of chlorinated solvents was investigated in field trials at the Western Storage Area (WSA) – RSRL (formerly United Kingdom Atomic Energy Authority - UKAEA) Oxfordshire, UK. The WSA site had been contaminated with various chemicals including mineral oil, chloroform, trichloroethane (TCA), carbon tetrachloride and tetrachloroethene (PCE). The contamination had affected the unsaturated zone, groundwater in the chalk aquifer and was a continuing source of groundwater contamination below the WSA. During TESVE the target treatment zone was heated to above the boiling point of water increasing the degree of volatilization of contaminants of concern (CoC), which were mobilised and extracted in the vapour phase. A significant reduction of concentrations of chlorinated solvent in the unsaturated zone was achieved by the full-scale application of TESVE – In Situ Thermal Desorption (ISTD) technology. The rock mass temperature within target treatment zone remained in the range of 35°–44° C, 6 months after cessation of heating. The concentration of chlorinated ethenes and other CoC were found to be significantly lower adjacent to the thermal treatment area and 1 to 2 orders of magnitude lower within the thermal treatment zone. Samples were collected within and outside the thermal treatment zone using BioTraps® (passive, in-situ microbial samplers) from which the numbers of specific bacteria were measured using quantitative polymerase chain reaction (qPCR) methods of analysis. High populations of reductive dechlorinators such as Dechalococcoides spp. and Dehalobacter spp., were found within the zone that was subjected to thermal remediation and moderate levels of Dehalobacter sp were found outside the treatment area. These results confirm dehalogenating bacteria are present within the site and suggest populations have bounced back following thermal treatment. The thermally treated zone showed a greater number of active indigenous bacteria — indicating that the conditions following TESVE treatment selectively promote the growth of desirable bacteria. This might result from elimination of micro-organisms competing for hydrogen as an electron donor, increased biovailability of CoC or a reduction in its inhibiting properties. This paper aims to show the potential for biologically mediated contaminant reduction in assisting thermal remediation projects. During and post active thermal remediation this approach can help reduce total treatment costs by providing an inexpensive final polishing step or by being a complementary process within the perimeter of heated zone and inside hotspots during the cool-down phase.

Copyright © 2009 by ASME
Topics: Soil



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In