0

Full Content is available to subscribers

Subscribe/Learn More  >

Intermediate and Long-Term Radiological Consequences of an Uncontrolled Access of Saline Solution Into the Asse Mine

[+] Author Affiliations
Veronika Ustohalova, Christian Küppers

Öko-Institut e.V., Darmstadt, Germany

Paper No. ICEM2011-59163, pp. 1291-1300; 10 pages
doi:10.1115/ICEM2011-59163
From:
  • ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
  • Reims, France, September 25–29, 2011
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-5498-3
  • Copyright © 2011 by ASME

abstract

The risk of radioactive contamination in the biosphere surrounding the Asse salt mine has been assessed to determine the possible radioactive exposure to humans if the mine collapses. Geological conditions and anthropogenic activities have made the mine instable and allow salt-saturated ground water to seep in. This uncontrolled brine inflow significantly increases the risk of the mine collapsing. If the mine collapses, the brine will be pressed into groundwater, where the radionuclides can migrate into the biosphere and cause radioactive exposure. The key issue discussed in this paper is estimating the short- and long-term radiation burden for humans under several possible scenarios of radionuclide release. Only a radioecological model able to quantify and estimate processes taking place can generate usable results. This work develops the radioecological model describing both radionuclide migration and the resulting radiological exposure along several exposition pathways. Development of the model took into account the sorption processes, solubility limits and special aspects of decay chain migration. The radiological exposure was estimated under non-equilibrated conditions for the case of short-time expositions. At the end of this paper, the model’s background, the results of the computations and a comparison of several scenarios will be presented.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In