0

Full Content is available to subscribers

Subscribe/Learn More  >

Defect Characteristic Prediction of Pipeline by Means of Wavelet Neural Network Based on the Hierarchical Clustering Algorithm

[+] Author Affiliations
Maoan Wei, Shijiu Jin, Likun Wang, Yan Zhou

Tianjin University, Tianjin, China

Paper No. IPC2004-0722, pp. 921-924; 4 pages
doi:10.1115/IPC2004-0722
From:
  • 2004 International Pipeline Conference
  • 2004 International Pipeline Conference, Volumes 1, 2, and 3
  • Calgary, Alberta, Canada, October 4–8, 2004
  • Conference Sponsors: International Petroleum Technology Institute
  • ISBN: 0-7918-4176-6 | eISBN: 0-7918-3737-8
  • Copyright © 2004 by ASME

abstract

It is very difficult to generalize the relationship between MFL signal and the defect geometric parameters of the pipeline because the relationship is nonlinear. Many applications of wavelet neural network on this field show that the defect geometric parameters can be obtained with this method to some extent. However, the initial centers have great influence on performance of the network. Hierarchical clustering algorithm is proposed in this paper and applied to classification of defect samples, centers selection and calculation of basis function width. With this algorithm, clusters similarity is computed to create tree structure and the perfect clustering is obtained. The sample set created from finite element defect simulation are used to train and validate the efficiency and reliability of the network based on hierarchical clustering algorithm. The experiment shows that the training speed and the prediction precision of the network can be improved simulataneously.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In