0

Full Content is available to subscribers

Subscribe/Learn More  >

Characteristics on the SAP-Based Wasteform Containing Radioactive Molten Salt Waste

[+] Author Affiliations
Hwan-Seo Park, In-Tae Kim, Hwan-Young Kim, Han-Soo Lee

Korea Atomic Energy Research Institute, Daejeon, Korea

Byeung Gil Ahn

Korea Atomic Energy Reaearch Institute, Daejeon, Korea

Paper No. ICEM2009-16137, pp. 697-700; 4 pages
doi:10.1115/ICEM2009-16137
From:
  • ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management, Volume 1
  • Liverpool, UK, October 11–15, 2009
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4407-6 | eISBN: 978-0-7918-3865-X
  • Copyright © 2009 by ASME

abstract

This study investigated a unique wasteform containing molten salt wastes which are generated from the pyro-process for the spent fuel treatment. Using a conventional sol-gel process, SiO2 -Al2 O3 -P2 O5 (SAP) inorganic material reactive to metal chlorides were prepared. By using this inorganic composite, a monolithic wasteform were sucessfully fabricated via a simple process, reaction at 650°C and sintering at 1100°C. This unique wasteform should be qualified if it meets the requirements for final disposal. For this reasons, this paper characterized its chemical durability, physical properties, morphology and etc. In the SAP, there are three kinds of chains, Si-O-Si as a main chain, Si-O-Al as a side chain and Al-O-P/P-O-P as a reactive chain. Alkali metal chlorides were converted into metal aluminosilicate (Lix Alx Si1−x O2−x ) and metal phosphate (Li3 PO4 and Cs2 AlP3 O10 ) while alkali earth and rare earth chlorides were changed into only metal phosphates (Sr5 (PO4 )3 Cl and CePO4 ). These reaction products were compatible to borosilicate glasses which were functioned as a chemical binder for metal aluminosilicate and a physical binder for metal phosphates. By these phenomena, the wasteform was formed homogenously above μm scale. This would affect the leaching behaviors of each radionuclides or component of binder. The leach rates of Cs and Sr under the PCT-A test condition were about 10−3 g/m2 day. The physical properties (Cp, k, ρ, Hv, and etc) were very reasonable. Other leaching tests (ISO, MCC-1P) are on-going. From these results, it could be concluded that SAP can be considered as an effective stabilizer on metal chlorides and the method using SAP will give a chance to minimize the waste volume for the final disposal of salt wastes through further researches.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In