0

Full Content is available to subscribers

Subscribe/Learn More  >

Use of Source Term and Air Dispersion Modeling in Planning Demolition of Highly Alpha-Contaminated Buildings

[+] Author Affiliations
James G. Droppo, Bruce A. Napier, Jeremy P. Rishel

Pacific Northwest National Laboratory, Richland, WA

Richard W. Bloom

CH2M Hill Plateau Remediation Company, Richland, WA

Paper No. ICEM2011-59254, pp. 59-65; 7 pages
doi:10.1115/ICEM2011-59254
From:
  • ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
  • Reims, France, September 25–29, 2011
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-5498-3
  • Copyright © 2011 by ASME

abstract

The current cleanup of structures related to cold-war production of nuclear materials includes the need to demolish a number of highly alpha-contaminated structures. The process of planning for the demolition of such structures includes unique challenges related to ensuring the protection of both workers and the public. Pre-demolition modeling analyses were conducted to evaluate potential exposures resulting from the proposed demolition of a number of these structures. Estimated emission rates of transuranic materials during demolition are used as input to an air-dispersion model. The climatological frequencies of occurrence of peak air and surface exposures at locations of interest are estimated based on years of hourly meteorological records. The modeling results indicate that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. The pre-demolition modeling directed the need for better contamination characterization and/or different demolition methods—and in the end, provided a basis for proceeding with the planned demolition activities. Post-demolition modeling was also conducted for several contaminated structures, based on the actual demolition schedule and conditions. Comparisons of modeled and monitoring results are shown. Recent monitoring data from the demolition of a UO3 plant shows increments in concentrations that were previously identified in the pre-demolition modeling predictions; these comparisons confirm the validity and value of the pre-demolition source-term and air dispersion computations for planning demolition activities for other buildings with high levels of radioactive contamination.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In