Full Content is available to subscribers

Subscribe/Learn More  >

Adhesive and Mechanical Properties of Carbon Nanotube Probes Contacting Chemically-Treated Surfaces

[+] Author Affiliations
Kane M. Barker

Shorter University, Rome, GA

Al Ferri, Lawrence A. Bottomley

Georgia Tech, Atlanta, GA

Paper No. IMECE2011-64403, pp. 739-746; 8 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 11: Nano and Micro Materials, Devices and Systems; Microsystems Integration
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5497-6
  • Copyright © 2011 by ASME


Carbon nanotubes are useful in a variety of measurement applications. In the case of Atomic Force Microscopes (AFMs), carbon nanotubes can be affixed to the tip of the AFM cantilever to improve image resolution and enable images of surfaces with deep crevices and trench structures. In this paper, the mechanical response of long, straight, small walled carbon nanotubes (SWNTs) under compressive and tensile load is examined with an atomic force microscope. Multi-dimensional force spectroscopy (MDFS) is used to simultaneously measure the cantilever resonant frequency, deflection, and scanner motion. The acquired force curves reveal that the SWNT buckles shortly after contact is initiated. As the scanner continues to rise and then reverses direction, the SWNT undergoes a number of adhesion/sticking episodes, buckling, and slip events. The bulk properties of the nanotube are estimated by measuring the shift in natural frequency during tension. Finally, the carbon nanotube is modeled as an elastica in order to predict the post-buckled shape of the SWNT. By comparing the model results with MDFS results, the static coefficient of friction between the SWNT and a variety of surfaces is estimated. The study suggests that MDFS has a wide applicability for studying the mechanical and adhesive properties of various nanotubes, nanorods and nanofibers.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In