0

Full Content is available to subscribers

Subscribe/Learn More  >

Ultrasonic Excitation Induced Wenzel to Cassie Transition

[+] Author Affiliations
Qi Ni, Nathan B. Crane, Rasim O. Guldiken

University of South Florida, Tampa, FL

Paper No. IMECE2011-64391, pp. 639-641; 3 pages
doi:10.1115/IMECE2011-64391
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 11: Nano and Micro Materials, Devices and Systems; Microsystems Integration
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5497-6
  • Copyright © 2011 by ASME

abstract

Wetting on textured solids has gained much attention in the past decade due to increasing interest in artificial superhydrophobic surfaces. (Bahadur & Garimella, 2007; Boreyko & Chen, 2009; Forsberg, Nikolajeff, & Karlsson, 2011; Heikenfeld & Dhindsa, 2008) On textured surfaces, the wetting liquid can be in either the Cassie–Baxter state, which the liquid does not fill the surface texture; or the Wenzel state, which the liquid completely wets the surface and fills the recesses. For a hydrophobic micro-scale rough surface, the Cassie state is usually a more favorable state since it requires less energy. However, due to contact angle hysteresis, the Wenzel state can also be meta-stable. By controlling the roughness of the texture and initial droplet position, both Cassie and Wenzel states can be stable simultaneously. (Koishi, Yasuoka, Fujikawa, Ebisuzaki, & Xiao, 2009) However, with the proper energy input, the droplets can be induced to transition between states. While multiple methods have been developed to switch from Cassie to Wenzel states (Bormashenko, Pogreb, Whyman, & Erlich, 2007; Krupenkin et al., 2007; Kumari & Garimella, 2011; Ran, Ding, Liu, Deng, & Hou, 2008), it is much more difficult to switch from the Wenzel state to the Cassie state. Wenzel-Cassie transitions have been achieved by changing the surface structure to destabilize the Wenzel state (Krupenkin et al., 2007)(Ran et al., 2008) or by changing the ambient fluid. (Dhindsa et al., 2006)

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In