0

Full Content is available to subscribers

Subscribe/Learn More  >

U.S. Department of Energy’s “Initiatives for Proliferation Prevention” Program: Solidification Technologies for Radioactive Waste Treatment in Russia

[+] Author Affiliations
Yuri Pokhitonov

V. G. Khlopin Radium Institute, St. Petersburg, Russia

Dennis Kelley

Pacific Nuclear Solutions, Indianapolis, IN

Paper No. ICEM2009-16037, pp. 143-154; 12 pages
doi:10.1115/ICEM2009-16037
From:
  • ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management, Volume 1
  • Liverpool, UK, October 11–15, 2009
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4407-6 | eISBN: 978-0-7918-3865-X
  • Copyright © 2009 by ASME

abstract

Large amounts of liquid radioactive waste have existed in the U.S. and Russia since the 1950’s as a result of the Cold War. Comprehensive action to treat and dispose of waste products has been lacking due to insufficient funding, ineffective technologies or no proven technologies, low priority by governments among others. Today the U.S. and Russian governments seek new, more reliable methods to treat liquid waste, in particular the legacy waste streams. A primary objective of waste generators and regulators is to find economical and proven technologies that can provide long-term stability for repository storage. In 2001, the V.G. Khlopin Radium Institute (Khlopin), St. Petersburg, Russia, and Pacific Nuclear Solutions (PNS), Indianapolis, Indiana, began extensive research and test programs to determine the validity of polymer technology for the absorption and immobilization of standard and complex waste streams. Over 60 liquid compositions have been tested including extensive irradiation tests to verify polymer stability and possible degradation. With conclusive scientific evidence of the polymer’s effectiveness in treating liquid waste, both parties have decided to enter the Russian market and offer the solidification technology to nuclear sites for waste treatment and disposal. In conjunction with these efforts, the U.S. Department of Energy (DOE) will join Khlopin and PNS to explore opportunities for direct application of the polymers at predetermined sites and to conduct research for new product development. Under DOE’s “Initiatives for Proliferation Prevention” (IPP) program, funding will be provided to the Russian participants over a three year period to implement the program plan. This paper will present updated details of U.S. DOE’s IPP program, the project structure and its objectives both short and long-term, polymer tests and plications for LLW, ILW and HLW, and new product development initiatives.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In