Full Content is available to subscribers

Subscribe/Learn More  >

Study of the Radioactive Liquid Waste Treatment by Coprecipitation: From Modeling to New Process Designs

[+] Author Affiliations
Yves Barré, Vincent Pacary

Atomic Energy Commission, Bagnols sur Cèze, France

Paper No. ICEM2009-16018, pp. 49-54; 6 pages
  • ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management, Volume 1
  • Liverpool, UK, October 11–15, 2009
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4407-6 | eISBN: 978-0-7918-3865-X
  • Copyright © 2009 by ASME


The ever increasing pressure to reduce the release of radioactive and other toxic substances into environment requires constant improvement/upgrading of processes and technologies for treatment and conditioning of liquid radioactive wastes. To decontaminate liquid nuclear wastes, the coprecipitation process is the most commonly used in nuclear field because it can be applied to any type of aqueous effluents whatever their composition may be. This process deals with the in situ precipitation of solid particles to selectively remove one or more radioelements. In the nuclear research center of CEA (Commissariat à l’Energie Atomique), the coprecipitation of 90 Sr with barium sulphate is the technique used to treat selectively this radionuclide. In a previous study (1), an elaborated model is presented which predicts the radioactive strontium decontamination factor of nuclear waste solutions which can be achieved by using a coprecipitation process with barium sulphate. The originality of this new approach lies in the possibility to simulate the decontamination process in non equilibrium conditions and at the reactor scale. This modelling combined with the resolution of the population balance, enables to identify the influence of process parameters (flow rates, stirring speed[[ellipsis]]) on crystal size and ultimately on decontamination. Simulations of the strontium coprecipitation with barium sulphate have been performed in continuous and semi batch reactors. Thanks to these simulations, laws of the treatment efficiency variation as a function of several process parameters (mean residence time, stirring speed, BaSO4 concentration) have been determined and experimentally verified. This study leads to the determination of optimal treatment conditions. Three apparatus (recycling apparatus, fluidised bed and reactor/settling tank) providing these optimal conditions have been successfully tested and offered significant outlooks for the reduction of the residual sludge volume.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In