Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Cold Bends by Finite Element Method

[+] Author Affiliations
M. Behbahanifard, J. J. R. Cheng, D. W. Murray

University of Alberta, Calgary, AB, Canada

Joe Zhou, K. Adams

TransCanada Pipelines Limited, Calgary, AB, Canada

K. Yoshizaki, N. Fukuda

Tokyo Gas Company, Ltd., Tokyo, Japan

M. Como, E. Cerelli

Snam Rete Gas, Italy

Paper No. IPC2004-0744, pp. 427-435; 9 pages
  • 2004 International Pipeline Conference
  • 2004 International Pipeline Conference, Volumes 1, 2, and 3
  • Calgary, Alberta, Canada, October 4–8, 2004
  • Conference Sponsors: International Petroleum Technology Institute
  • ISBN: 0-7918-4176-6 | eISBN: 0-7918-3737-8
  • Copyright © 2004 by ASME


A composite finite element model for cold bend simulation of energy pipelines is presented in this paper. Four-node shell elements with material and geometric nonlinearity are used to model a pipe in straight condition. An elastic pipe, having the same nodal coordinates as the main pipe along with elastic radial links are used as a tool to prevent local buckling and ovalization of the main pipe during the cold bend process. By dividing the elastic pipe into series of rings along the axis of the pipe and by conducting a four-step procedure, residual curvature is developed in a specific segment of a pipe. Based on the proposed concept, different methods of cold bending are discussed and the results are presented. University of Alberta cold bend trials were used to validate the proposed finite element model. The moment-curvature response, pattern of imperfections, and distribution of maximum residual strains are obtained by the finite element model and compared with the test results.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In