Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Tests and Numerical Simulation in a Reduced Model in a Pipeline With ZIG-ZAG Geometry: A Parametric Study

[+] Author Affiliations
Edgard Poiate Junior, Renato Seixas da Rocha, Álvaro Maia da Costa, Cláudio dos Santos Amaral

R&D Center PETROBRAS, Rio de Janeiro, RJ, Brazil

Giuseppe Barbosa Guimarães, Pablo Furtado de Souza

PUC - Rio, Rio de Janeiro, RJ, Brazil

Paper No. IPC2004-0423, pp. 399-407; 9 pages
  • 2004 International Pipeline Conference
  • 2004 International Pipeline Conference, Volumes 1, 2, and 3
  • Calgary, Alberta, Canada, October 4–8, 2004
  • Conference Sponsors: International Petroleum Technology Institute
  • ISBN: 0-7918-4176-6 | eISBN: 0-7918-3737-8
  • Copyright © 2004 by ASME


In January 2000, PETROBRAS faced a leakage of heavy heated MF380 oil from a 0.406m pipeline in the Guanabara Bay. When interacting with the soil, the thermal structural buckling of the pipeline induced the rupture of the pipeline wall causing the oil to leak. In order to overcome this undesired phenomenon, PETROBRAS studied several new pipeline alternatives. As a result of these studies, a “ZIG-ZAG” geometry pipeline named PE-3 was adopted. Given that the oil industry applications of this kind of concept have been very few and in soil conditions different from the ones in the Guanabara Bay, a very sophisticated procedure was developed including the simulation the thermal mechanical interactions between the soil and the pipeline structure. Computer modeling was carried out using the finite element method considering the soil, the pipeline non-linear material behavior and the finite displacements. In order to validate the numerical modeling, an experimental test was carried out in a reduced model with physics similar to a ZIG-ZAG geometry pipeline (PE-3). The numerical and experimental results match and have a fine conformity. After validation of the models, numerical and experimental parametric studies were completed with various angles and wavelengths of ZIG-ZAG to evaluate the conception of the PE-3 pipeline.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In