Full Content is available to subscribers

Subscribe/Learn More  >

Wicking Performance of Two-Dimensional Bi-Porous Wicks

[+] Author Affiliations
Chan Byon, Sung Jin Kim

Korea Advanced Institute of Science and Technology, Daejeon, South Korea

Paper No. IMECE2011-62460, pp. 735-743; 9 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat and Mass Transport Processes, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5496-9
  • Copyright © 2011 by ASME


Micro-post wick is a promising candidate for high-heat-flux applications due to its compatibility, high conductivity and permeability. In this study, the capillary performances of micro-post wicks of various configurations are investigated. Five types of micro-post wicks which have dual-scale pore structure (parallel, quadratic, hexagonal, diamond, and periodic) are considered and the capillary performance is compared with micro-post wicks of uniform array. The capillary performance of wicks is characterized using capillary rate of rise experiments and numerical simulations that accounts for the finite curvatures of liquid menisci. From the experimental and numerical studies, it is shown that the capillary performance of multi-scale wicks is higher than that of mono-scale wicks significantly (by 35% for parallel array, 31% for quadratic array). The capillary performance parameter is shown to be primarily a function of solid fraction and decreases approximately linearly with solid fraction, regardless of the array type. The experiment, associated with visual observation, indicates that the capillary performance is degraded when the pore size is too large or the solid fraction is too small.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In