Full Content is available to subscribers

Subscribe/Learn More  >

Fault Rupture Assessments for High-Pressure Pipelines in the Southern San Francisco Bay Area, California

[+] Author Affiliations
Keith I. Kelson, Christopher S. Hitchcock, John N. Baldwin

William Lettis & Associates, Inc., Walnut Creek, CA

James D. Hart

SSD, Inc., Reno, NV

James C. Gamble

Pacific Gas & Electric Company, San Francisco, CA

Chih-Hung Lee, Frank Dauby

Pacific Gas & Electric Company, Walnut Creek, CA

Paper No. IPC2004-0212, pp. 313-320; 8 pages
  • 2004 International Pipeline Conference
  • 2004 International Pipeline Conference, Volumes 1, 2, and 3
  • Calgary, Alberta, Canada, October 4–8, 2004
  • Conference Sponsors: International Petroleum Technology Institute
  • ISBN: 0-7918-4176-6 | eISBN: 0-7918-3737-8
  • Copyright © 2004 by ASME


The San Andreas, Hayward, and Calaveras faults are major active faults that traverse the San Francisco Bay area in northern California, and may produce surface rupture during large earthquakes. We assessed the entire Pacific Gas & Electric Company natural gas transmission system in northern California, and identified several locations where primary pipelines cross these faults. The goal of this effort was to develop reasonable measures for mitigating fault-rupture hazards during the occurrence of various earthquake scenarios. Because fault creep (e.g., slow, progressive movement in the absence of large earthquakes) occurs at the pipeline fault crossings, we developed an innovative approach that accounts for the reduction in expected surface displacement, as a result of fault creep, during a large earthquake. In addition, we used recently developed data on the distribution of displacement across fault zones to provide likely scenarios of the seismic demand on each pipeline. Our overall approach involves (1) identifying primary, high-hazard fault crossings throughout the pipeline system, (2) delineating the location, width, and orientation of the active fault zone at specific fault-crossing sites, (3) characterizing the likely amount, direction, and distribution of expected surface fault displacement at these sites, (4) evaluating geotechnical soil conditions at the fault crossings, (5) modeling pipeline response, and (6) developing mitigation measures. At specific fault crossings, we documented fault locations, widths, and orientations on the basis of detailed field mapping and exploratory trenching. We estimated fault displacements based on expected earthquake magnitude, and then adjusted these values to account for the effects of fault creep at the ground surface. Fault creep decreases the amount of expected surface fault rupture, such that sites having high creep rates are expected to experience proportionally less surface displacement during a large earthquake. Lastly, we modeled the expected amount of surface offset to reflect the distribution of offset across the fault zone, based on data from historical surface ruptures throughout the world. Where specific fault crossings contain a single primary fault strand, we estimated that 85% of the total surface offset occurs on the main fault and the remainder occurs as secondary deformation. At sites where the pipeline crosses multiple active fault strands in a broad zone, we consider complex rupture distributions. Using this approach yields realistic, appropriately conservative estimates of surface displacement for assessing seismic demands on the pipelines.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In