0

Full Content is available to subscribers

Subscribe/Learn More  >

Pool Boiling Heat Transfer Characteristics of HFO-1234yf With and Without Microporous-Enhanced Surfaces

[+] Author Affiliations
Gilberto Moreno, Sreekant Narumanchi, Charles King

National Renewable Energy Laboratory, Golden, CO

Paper No. IMECE2011-64002, pp. 577-587; 11 pages
doi:10.1115/IMECE2011-64002
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat and Mass Transport Processes, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5496-9
  • Copyright © 2011 by ASME

abstract

This fundamental study characterizes the pool boiling performance of a new refrigerant, HFO-1234yf (hydrofluoroolefin 2,3,3,3-tetrafluoropropene). The similarities in thermophysical properties with HFC-134a and low global warming potential make HFO-1234yf the prospective next generation refrigerant in automotive air-conditioning systems. This study examines the possibility of using this refrigerant for two-phase cooling of hybrid and electric vehicle power electronic components. Pool boiling experiments were conducted with HFO-1234yf and HFC-134a at system pressures ranging from 0.7 to 1.7 MPa using horizontally oriented 1 cm2 heat sources. Results show that the boiling heat transfer coefficients of HFO-1234yf and HFC-134a are nearly identical at lower heat fluxes. HFO-1234yf yielded lower heat transfer coefficients at higher heat fluxes and lower critical heat flux (CHF) as compared with HFC-134a. To enhance boiling heat transfer, a copper microporous coating was applied to the test surfaces. The coating provided enhancement to both the boiling heat transfer coefficients and CHF, for both refrigerants, at all tested pressures. Increasing pressure decreases the level of heat transfer coefficient enhancements while increasing the level of CHF enhancements.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In