0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Natural Convection Heat Transfer of an Ionic Liquid in a Rectangular Enclosure Heated From Below

[+] Author Affiliations
Titan C. Paul, A. K. M. M. Morshed, Jamil A. Khan

University of South Carolina, Columbia, SC

Elise B. Fox, Ann Visser, Nicholas Bridges

Savannah River National Laboratory, Aiken, SC

Paper No. IMECE2011-64148, pp. 437-444; 8 pages
doi:10.1115/IMECE2011-64148
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat and Mass Transport Processes, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5496-9
  • Copyright © 2011 by ASME

abstract

This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C4 mmim][NTf2 ]) at a Rayleigh number range of 1.13×107 to 7.7×107 . In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C4 mmim][NTf2 ] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C4 mmim][NTf2 ] varies from 1.437–1.396 g/cm3 within the temperature range of 10–50°C, the thermal conductivity varies from 0.125–0.12 W/m.K between a temperature of 10 to 70°C, the heat capacity varies from 1.015 J/g.K–1.760 J/g.K within temperature range of 25–340°C and the viscosity varies from 243cP–18cP within temperature range 10–75°C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 20% of DI water) than DI water.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In