Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on SCC Susceptibility of X60 Steel Using Full Pipe Sections in Near-Neutral pH Environment

[+] Author Affiliations
Bong Am Kim, Noritake Oguchi, Yuji Hosokawa

Tokyo Gas Company, Ltd., Tokyo, Japan

Wenyue Zheng, G. Williams, M. Laronde, J. A. Gianetto, G. Shen, W. R. Tyson

Natural Resources Canada, Ottawa, ON, Canada

Paper No. IPC2004-0280, pp. 133-141; 9 pages
  • 2004 International Pipeline Conference
  • 2004 International Pipeline Conference, Volumes 1, 2, and 3
  • Calgary, Alberta, Canada, October 4–8, 2004
  • Conference Sponsors: International Petroleum Technology Institute
  • ISBN: 0-7918-4176-6 | eISBN: 0-7918-3737-8
  • Copyright © 2004 by ASME


Stress corrosion cracking (SCC) tests were performed using the pipe section buried in a clay type of soil with the pH adjusted to near-neutral range. Pipe specimens with various sizes of fatigue pre-cracks ahead of artifical notch tips on the outer surface were subjected to cyclic loading tests. Maximum level of hoop stress was 105% SMYS, and R-value (Ratio of minimum load to maximum load) was 0.5. Growth of cracks was observed from the fatigue crack tips. Fractographic and metallographic examination has confirmed the quasi-cleavage nature of the transgranular SCC that is typically observed in near-neutral pH SCC. Crack depth measurement using DCPD method revealed the relatively high crack growth rate up to 10−5 mm/s. Metallographic examinations showed the existence of many micro-cracks associated with MnS inclusions in the highly strained field ahead of the initial crack tips. The relatively high crack growth rate may be caused by MnS inclusions. The loading rate, dJ/dt, was calculated for each crack condition in order to correlate qualitatively the crack growth rate with the loading rate. J-integral was calculated through non-linear FEM analyses for semi-elliptical cracks based on the stress-strain relationships obtained from the tensile tests using the same X60 steel specimen. Linear relationship was then obtained between the crack growth rate and the loading rate, and therefore the possibility to predict crack growth rates for various loading condition in the field was demonstrated.

Copyright © 2004 by ASME
Topics: Steel , Pipes



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In