Full Content is available to subscribers

Subscribe/Learn More  >

Environmental Effect of Crack Growth Rate of Pipeline Steel in Near-Neutral pH Soil Environments

[+] Author Affiliations
Weixing Chen

University of Alberta, Edmonton, AB, Canada

Robert Sutherby

TransCanada PipeLines Limited, Calgary, AB, Canada

Paper No. IPC2004-0449, pp. 123-132; 10 pages
  • 2004 International Pipeline Conference
  • 2004 International Pipeline Conference, Volumes 1, 2, and 3
  • Calgary, Alberta, Canada, October 4–8, 2004
  • Conference Sponsors: International Petroleum Technology Institute
  • ISBN: 0-7918-4176-6 | eISBN: 0-7918-3737-8
  • Copyright © 2004 by ASME


The laboratory work reported here was initiated to determine whether different soils can be shown to give rise to different growth rate for a given pipeline steel. Two soil synthetic environments with different near neutral pH value were designed based on various soil chemistries collected near the pipeline in the field where near-neutral pH SCC was found. The crack growth behavior in both the environments were determined using compact tension specimen. The crack growth rate was in situ monitored by the potential drop system. It was found that soil chemistry has a profound effect on crack growth rate. Although it is insensitive to the soil chemistry and cyclic frequency, the crack growth rate in the high ΔK regime has been significantly enhanced in comparison with that in air. In the low ΔK regime, the growth rate is shown to have minor dependence on ΔK value but strong dependence on the testing environments. The observed crack growth behavior in different ΔK regimes and environments was related to the crack tip sharpness and crack crevice wideness as a result of corrosion and room temperature creep deformation. Soil solutions with low general corrosion rate are associated with a blunt crack tip and wide crack crevice, which would result in lower stress intensity at the crack tip and weaker crack closure effect, respectively. Similarly, a loading wave allowing shorter creep time on a given volume of material at the crack tip at high loading stress tends to produce a sharper crack tip and narrow crack crevice. These two factors have opposite effect on crack growth rate, and the observed crack growth rate reflects the combined effect of these two opposite factors.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In