0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Dynamic Analysis of a Railway Seat Under Longitudinal Impact Condition

[+] Author Affiliations
Francesco Caputo, Giuseppe Lamanna, Alessandro Soprano

Second University of Naples, Aversa, CE, Italy

Paper No. IMECE2011-62224, pp. 413-420; 8 pages
doi:10.1115/IMECE2011-62224
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 9: Transportation Systems; Safety Engineering, Risk Analysis and Reliability Methods; Applied Stochastic Optimization, Uncertainty and Probability
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5495-2
  • Copyright © 2011 by ASME

abstract

For a railway vehicle, the structural integrity of the seat frame and of its connection to that of the coach is a very important aspect of the design phase addressed to the improvement of the passive safety performances, at most because the analysis of the accidents occurred in recent years shows that secondary impacts against vehicle interiors remain one of the main causes of injury. All regulations which apply to this task start from the assumption that whatever happens to the vehicle the seat must remain connected to the vehicle frame, as well as the different parts to each other. Numerical evaluations are obviously necessary to match with this design requirement; it would be desirable to apply multi-body (MB) codes to this task, as they are really fast, but unfortunately they can’t provide detailed results for what concerns the structural behaviour of the involved seat and vehicle components. For this reason, in the present work a full finite element model of a sled-test, including a FE dummy, has been developed, analysed and validated by comparison with the available experimental results; it has been also showed how this kind of numerical simulation is suited and necessary to evaluate the structural behaviour of the structural components of the seat frame. In the context of the presented study the MADYMO® code has been adopted to perform the preliminary MB analyses necessary to calibrate and evaluate the relevant parameters of dummy-seat contact surfaces and of seat-belt stiffness, while LS DYNA® code has been used for the structural dynamic FE analyses.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In