Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of the Performance of a Roadside Safety Barrier Located Behind the Break Point of a Slope

[+] Author Affiliations
M. Mongiardini, J. D. Reid

University of Nebraska - Lincoln, Lincoln, NE

Paper No. IMECE2011-64483, pp. 69-75; 7 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 9: Transportation Systems; Safety Engineering, Risk Analysis and Reliability Methods; Applied Stochastic Optimization, Uncertainty and Probability
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5495-2
  • Copyright © 2011 by ASME


Numerical simulations allow engineers in roadside safety to investigate the safety of retrofit designs minimizing or, in some cases, avoiding the high costs related to the execution of full-scale experimental tests. This paper describes the numerical investigation made to assess the performance of a roadside safety barrier when relocated behind the break point of a 3H:1V slope, found on a Mechanically Stabilized Earth (MSE) system. A safe barrier relocation in the slope would allow reducing the installation width of the MSE system by an equivalent amount, thus decreasing the overall construction costs. The dynamics of a pick-up truck impacting the relocated barrier and the system deformation were simulated in detail using the explicit non-linear dynamic finite element code LS-DYNA. The model was initially calibrated and subsequently validated against results from a previous full-scale crash test with the barrier placed at the slope break point. After a sensitivity analysis regarding the role of suspension failure and tire deflation on the vehicle stability, the system performance was assessed when it was relocated into the slope. Two different configurations were considered, differing for the height of the rail respect to the road surface and the corresponding post embedment into the soil. Conclusions and recommendations were drawn based on the results obtained from the numerical analysis.

Copyright © 2011 by ASME
Topics: Safety



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In