Full Content is available to subscribers

Subscribe/Learn More  >

Forming Prediction of Magnesium Alloy Sheets Using a Continuum Damage Mechanics Multistep Inverse Approach

[+] Author Affiliations
Satish K. Bapanapalli, Ba Nghiep Nguyen

Pacific Northwest National Laboratory, Richland, WA

Paper No. IMECE2008-66337, pp. 27-34; 8 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 14: New Developments in Simulation Methods and Software for Engineering Applications
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4875-3 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


This paper applies a multistep inverse approach using a new method to generate the intermediate configurations to analyze the press forming of magnesium alloys. The developed approach considers a final configuration to be formed from a flat blank sheet. It accounts for a series of intermediate configurations that are estimated based on the initial and final configurations as well as tooling conditions using optimization techniques. These techniques minimize the sheet metal surface area subject to the constraints imposed on the punch and die. Due to the limited formability of magnesium alloys, it is important to realistically estimate the intermediate configurations so that a damage mechanics approach can be explored to predict damage accumulations that can cause rupture of the sheet during forming. Elastic-plastic constitutive laws are used with the modified Hill’s criterion and deformation theory of plasticity to describe the behavior of AZ31 magnesium alloys. Damage is captured by a damage variable that governs the equivalent stress. A damage-plasticity coupled approach is employed for the integration of the constitutive equations. The computed strain increment from two consecutive intermediate configurations is used to predict the resulting damage accumulations during forming. The continuum damage mechanics multistep inverse approach is applied to predict forming of AZ31 magnesium alloy sheets.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In