0

Full Content is available to subscribers

Subscribe/Learn More  >

Electroosmosis of Dilute Electrolyte Solutions in Microporous Media

[+] Author Affiliations
Moran Wang, Qinjun Kang, Hari Viswanathan

Los Alamos National Lab, Los Alamos, NM

Paper No. MNHMT2009-18368, pp. 195-202; 8 pages
doi:10.1115/MNHMT2009-18368
From:
  • ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Volume 1
  • Shanghai, China, December 18–21, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4389-5 | eISBN: 978-0-7918-3864-8
  • Copyright © 2009 by ASME

abstract

The multiphysiochemical transport in electroosmosis of dilute electrolyte solutions (<1mM) through microporous media with granular random structures has been modeled in this work by our numerical framework consisting of three steps. First, the three-dimensional microstructures of porous media are reproduced by a random generation-growth method. Then the effects of chemical adsorption and electrical dissociation at the solid-liquid interfaces are considered to determine the electrical boundary conditions, which vary with the ionic concentration, the pH, and the temperature. Finally the nonlinear governing equations for the electrokinetic transport are solved by a highly efficient lattice Poisson-Boltzmann algorithm. The simulation results indicate that the electroosmotic permeability through the granular microporous media increases monotonically with the porosity, the ionic concentration, the pH and the environmental temperature. When the surface electric potential is higher than 50 mV, the permeability increases with the electric potential exponentially. The electroosmotic permeability increases with the pH exponentially, but with the temperature linearly. The present modeling results may improve our understanding of hydrodynamic and electrokinetic transport in geophysical systems, and help guide the design of porous electrodes in micro energy systems.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In