Full Content is available to subscribers

Subscribe/Learn More  >

Study of Bubbly Flow Through a Packed Bed

[+] Author Affiliations
Daeseong Jo

Korean Atomic Energy Research Institute, Daejeon, South Korea

Shripad T. Revankar

Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea; Purdue University, West Lafayette, IN

Paper No. IMECE2011-64767, pp. 1175-1182; 8 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME


A two phase bubbly flow through a packed bed was studied for dominant bubble breakup and coalescence mechanisms through experiments and CFD modeling. Data on various two-phase parameters, such as local void fraction, bubble velocity, size, number, and shape were obtained from the high speed video images. Results indicated that when a flow regime changed from bubbly to either trickling or pulsing flow, the number of average size bubbles significantly decreased and the shape of majority of bubbles was no longer spherical. The bubble coalescence and breakup mechanisms depend on local conditions such as local velocity of the bubble and pore geometry. The CFD analysis using CFX software package was carried out to study bubble size distributions. In the analysis the models for interactions were examined for each case of bubble breakup flow and bubble coalescence. A comparative study was performed on the resulting bubble size distributions, breakup and coalescence rates estimated by individual models. For change of bubble size distributions along the axial direction medians was used as an comparative parameter and the CFD results on bubble medians were compared against the experimental data. This comparative study showed that the predictions estimated by CFD analyses with the bubble breakup and coalescence models currently available in the literature do not agree with the experimental data.

Copyright © 2011 by ASME
Topics: Bubbly flow



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In