Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Study of Unsteady Laminar Flow and Heat Transfer Through an Array of Rotating Rectangular Microchannels

[+] Author Affiliations
Pratanu Roy, N. K. Anand, Debjyoti Banerjee

Texas A&M University, College Station, TX

Paper No. IMECE2011-64745, pp. 1141-1145; 5 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME


Centrifugal microfluidics plays an important role for enabling many novel applications in life sciences. By controlling the rotating frequency, fluids can be handled and controlled without any actual pumps, actuators or active valves, resulting in cost effective and miniaturized techniques for fluid transport, valving, metering, switching, splitting and separation of fluids. In order to get a vivid picture of the underlying physics of centrifugal microfluidics, we have modeled and simulated fluid flow and heat transfer for water flowing through an array of rotating rectangular microchannels. A finite volume technique based on semi implicit pressure based equation (SIMPLE) algorithm has been developed to solve the Naiver-Stokes equations for unsteady laminar flow. The energy equation has been solved by applying repeated thermal boundary conditions at the wall in cross stream direction. The simulations show significant deviation of velocity and temperature profiles for rotating flow than those of non-rotating case. The results are presented for different flow Reynolds number and rotational Reynolds number.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In